The Power of Massive Invariant Environments

methodological talk at EJC 2018

by Anatoly Ressin

CEO, Blockchain Architect at Blockvis SIA co-founder of Latvian Blockchain Association

Invariant

- A relation, function, quantity, or property which remains unchanged when a specified transformation is applied
- A powerful tool for analysis an proofs
- Almost always is constructed at meta-level

Example #1 (quantity)

Example #2 (static relation)

- Euclidean Distance (in space with euclidean metric) between two points is **always** shorter than any other path between the same points
- Could be used for A* search on graphs located in euclidean space
- Could be improved with another invariant: Triangle Inequality.

However, better relations exists

Carefuly crafted single property for every vertex called Reach

Massive Invariants

- Sometimes, to build a useful invariant we need to entangle the topology of the problem space with calculation for building a supporting data structure (eg. Reach property)
- When some slices of the problem space could be treated as co-existing points at given moment of time we can either
 - Define their passive invariant properties (quantities)
 - or define their invariant behaviour (transition functions)
- Invariant that is defined for each co-existing point of the space we call here a Massive Invariant

Wonders of Massive Invariants

Cellular Automata: Conway's Game of Life

Game of Life: Universal Turing Machine

Game of Life - Universal Turing Machine

https://www.youtube.com/watch?v=My8AsV7bA94

Physical Example

Modeling Magnetic Monopole in the environment of <u>Dy₂Ti₂O₇</u>

Magnetic moments of the molecule organised in a way that allows to form a model of Magnetic monopole

- One of the most wonderful from practical massive invariant: Consensus (EG: BFT)
 - Every **Honest** Node Executes the same protocol
 - If there is majority of Honest Nodes every Honest Node will see the same state eventually

Conclusion

Sometimes you need to represent your problem space as the space where some massive invariant is constructible and it will give you an more power than you can expect.

Thank you for the attention!

by Anatoly Ressin

CEO, Blockchain Architect at Blockvis SIA co-founder of Latvian Blockchain Association

